Robust a posteriori error estimation for finite element approximation to (curl) problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust a posteriori error estimation for the nonconforming Fortin-Soulie finite element approximation

We obtain a computable a posteriori error bound on the broken energy norm of the error in the Fortin–Soulie finite element approximation of a linear second order elliptic problem with variable permeability. This bound is shown to be efficient in the sense that it also provides a lower bound for the broken energy norm of the error up to a constant and higher order data oscillation terms. The est...

متن کامل

A Posteriori Finite Element Error Estimation for Diffusion Problems

Adjerid et al. 2] and Yu 19, 20] show that a posteriori estimates of spatial discretiza-tion errors of piecewise bi-p polynomial nite element solutions of elliptic and parabolic problems on meshes of square elements may be obtained from jumps in solution gradients at element vertices when p is odd and from local elliptic or parabolic problems when p is even. We show that these simple error esti...

متن کامل

A posteriori error estimates for the finite element approximation of the Stokes problem

In this paper we propose a new technique to obtain upper and lower bounds on the energy norm of the error in the velocity field, for the Stokes problem. It relies on a splitting of the velocity error in two contributions: a projection error, that quantifies the distance of the computed solution to the space of divergence free functions, and an error in satisfying the momentum equation. We will ...

متن کامل

A Posteriori Error Estimation in Mixed Finite Element Methods for Signorini’s Problem

This paper presents a posteriori error estimates for Signorini’s problem which is discretized via a mixed finite element approach. The error control relies on the estimation of the discretization error of an auxiliary problem given as a variational equation. The resulting error estimates capture the discretization error of the auxiliary problem, the geometrical error and the error given by the ...

متن کامل

Robust Local Problem Error Estimation for a Singularly Perturbed Problem on Anisotropic Finite Element Meshes

Singularly perturbed problems often yield solutions with strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction–diffusion pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering

سال: 2016

ISSN: 0045-7825

DOI: 10.1016/j.cma.2016.06.007